Data Science Jumpstart with 10 Projects Course
3h 12m 21s
English
Paid
April 25, 2024
This course will empower you with the skills and tools to dive deep into data science using Python. We assume you have a foundational understanding of Python but not data science concepts. This course exposes you to the same tools that data scientists, data engineers, analysts use data to tackle real-world challenges.
More
In this course, you will:
- Delve into loading, cleaning, summarizing, and basic statistics with both CSV and Excel data.
- Master the art of combining and reshaping datasets to uncover hidden patterns in the Retail Data Insights project.
- Understand missing data handling, abnormal data recognition, and foundational machine learning techniques through Health Data Deep Dives.
- Create models to explore Air Quality Trends & Movie Reviews.
- Construct interactive dashboards using Plotly and explore SQL databases in the Interactive Dashboards & SQL Exploration section.
- Harness powerful libraries such as Pandas, Matplotlib, Plotly, and more.
Watch Online Data Science Jumpstart with 10 Projects Course
Join premium to watch
Go to premium
# | Title | Duration |
---|---|---|
1 | Welcome | 00:51 |
2 | Installing Jupyter in a Virtual Environment | 02:01 |
3 | Running in Github Codespaces | 01:37 |
4 | How to use Jupyter | 02:09 |
5 | How to use VS Code | 01:11 |
6 | Remember the Exercises | 00:27 |
7 | Intro csv v2 | 00:34 |
8 | Loading CSV data from a ZIP file with Pandas and Pyarrow | 05:26 |
9 | Summary stats in Pandas using describe, dtypes, and quantile | 06:35 |
10 | Pearson and Spearman Correlations in Pandas and Heatmaps | 05:36 |
11 | Understanding Pandas Categoricals with value_counts and Cross Tabulations | 04:50 |
12 | Visualizations in Pandas, with Histograms, Scatterplots, and Barplots | 08:37 |
13 | Summary | 00:25 |
14 | Intro excel | 00:42 |
15 | Create an Excel in Pandas with to_excel | 01:46 |
16 | Read Excel file in Pandas with read_excel and Pyarrow | 01:31 |
17 | Understanding Counts and Frequencies of Missing Data in Pandas with isna, any, sum, and mean | 03:03 |
18 | Quantifying Strings with filter and value_counts | 02:07 |
19 | Understanding Numbers with Correlations, Scatterplots, and Histograms | 03:33 |
20 | Writing and Formatting Excel Sheets in Pandas with to_excel and XlsxWriter add_format | 01:49 |
21 | Summary | 00:11 |
22 | Intro | 00:15 |
23 | Loading Data for Merging with Pyarrow | 00:57 |
24 | Merging Dataframes with the merge method and left_on, right_on parameters | 01:34 |
25 | Validating one to one and one to many merges | 02:51 |
26 | Debugging Merging by piping dataframe size | 02:36 |
27 | Cleanup columns after merging with loc | 02:19 |
28 | Export Merged data to Excel | 00:56 |
29 | Merging summary | 00:31 |
30 | Intro grouping | 00:38 |
31 | Loading Retail Data from Excel into Pandas Dataframe | 00:33 |
32 | Using Feather and Pyarrow to Speed up loading Retail Data in Pandas | 00:49 |
33 | Exploratory Data Analysis (EDA) in Pandas with describe, histograms, and value_counts | 03:48 |
34 | Aggregating in Pandas to Calculate Sales by Year | 02:44 |
35 | Using Groupby in Pandas to visualize Sales by country | 06:06 |
36 | Using Grouper in Pandas to Groupby by Month Frequency | 03:36 |
37 | Grouping by Month and Country and Visualizing with a Line Plot | 05:31 |
38 | Summary | 00:26 |
39 | Intro cleaning | 00:37 |
40 | Loading Multiple Files into a Single Pandas Datafarme with Glob | 00:47 |
41 | Understanding the Heart Data to Cleanup | 02:47 |
42 | Fixing the Age Column Type to Int8 | 00:44 |
43 | Converting the Numeric Sex Column into a String | 01:18 |
44 | Converting the Chest Pain Column into an Int8 | 00:49 |
45 | Dealing with ? Characters in the Trestbps Numeric Column | 02:25 |
46 | Creating a Function to Repeat Common Cleanup in the Chol Column | 03:08 |
47 | Using the Cleanup Function for the Fbs Column | 01:05 |
48 | Fixing the Restecg Column | 01:28 |
49 | Fixing the Thalach Column | 00:14 |
50 | Fixing the Exang Column | 00:15 |
51 | Updating the Cleanup Function to Clean the Oldpeak Column | 00:23 |
52 | Cleaning the Slope Column | 00:19 |
53 | Cleaning the Ca Column | 00:18 |
54 | Converting Numeric Values to Catgoricals with the Thal Column | 00:39 |
55 | Fixing the Num Column | 01:07 |
56 | Comparing Memory usage in Pandas with memory_usage | 00:50 |
57 | Refactoring to a Function in Pandas for Cleanup | 04:19 |
58 | Cleaning summary | 00:06 |
59 | Intro time series air quality dataset | 00:31 |
60 | Load CSV file from a Zip file with Pandas | 00:51 |
61 | Checking for Missing Values and Shape in Pandas | 00:52 |
62 | Parsing Dates Using Format Strings and to_datetime | 02:04 |
63 | Rename columns in Pandas to Remove Invalid Characters | 02:36 |
64 | Make a Function to Clean up Pandas Data | 00:52 |
65 | Converting Dates to UTC in Pandas | 00:57 |
66 | Converting Dates to Italian time in Pandas and pytz | 01:30 |
67 | Making Line Plots for Time Series Data in Pandas | 03:24 |
68 | Interpolating and Filling in Missing values in Pandas | 03:27 |
69 | Resampling Time Series Data in Pandas with resample | 02:30 |
70 | Creating 7 Day Rolling Averages in Pandas with rolling | 01:45 |
71 | Updating the Function with Cleanup Functionality | 00:16 |
72 | Summary | 00:22 |
73 | Intro text v2 | 00:25 |
74 | Load movie review text data from a directory | 01:32 |
75 | Exploring the str attribute in Pandas for String manipulation | 00:55 |
76 | Using Spacy to Remove Stop words in Pandas | 02:44 |
77 | Using scikit-learn to calculate Tfidf for Pandas text | 01:44 |
78 | Using XGBoost to Create a Classification Model | 02:40 |
79 | Predicting Values with XGBoost and Pandas | 01:40 |
80 | Intro v2 | 00:21 |
81 | Combining Multiple Datasets with Pandas and concat | 02:00 |
82 | Exploring heart disease with aggregations and scatterplots | 05:01 |
83 | Preparing a Pandas Dataset to Create an XGBoost Model | 04:59 |
84 | Tuning an XGBoost Model with Hyperopt | 06:02 |
85 | Using a Confusion matrix to Understand the Model | 01:48 |
86 | Ml summary | 00:09 |
87 | Intro SQL | 00:13 |
88 | Load CSV data into a Pandas dataframe and cleaning it | 01:32 |
89 | Using SqlAlchemy to Connect to a SQLite Database | 00:55 |
90 | Create a database table with Pandas using to_sql | 00:31 |
91 | Query a SQLite table from Pandas using read_sql | 01:19 |
92 | Query a SQLite table with Pandas | 01:57 |
93 | Visualize SQLite Data using Pandas | 01:54 |
94 | Summary SQL | 00:27 |
95 | Intro plotly | 00:11 |
96 | Load CSV data into Pandas dataframe | 00:22 |
97 | Clean Pandas data with a function for plotly | 01:45 |
98 | Creating a Line Plot in Plotly for Pandas | 02:01 |
99 | Creating a Bar plot in Plotly | 02:29 |
100 | Creating a Scatter plot in Plotly | 03:41 |
101 | Creating a Dashboard with Dash and Plotly Graphs | 01:43 |
102 | Creating a Plotly Dashboard using Dash with Widgets | 01:10 |
103 | Summary plotly | 00:08 |
104 | Conclusion | 01:17 |
Similar courses to Data Science Jumpstart with 10 Projects Course
DS4B 101-P: Python for Data Science Automation
Duration 27 hours 6 minutes 1 second
Course
The Ultimate Django Series: Part 1
Duration 4 hours 49 minutes 19 seconds
Course
Distributed Tasks Demystified with Celery, SQS & Python
Duration 4 hours 27 minutes 50 seconds
Course
Introduction to Ansible
Duration 2 hours 54 minutes 19 seconds
Course
Mathematical Foundations of Machine Learning
Duration 16 hours 25 minutes 26 seconds
Course
100 Days of Code - The Complete Python Pro Bootcamp for 2023
Duration 58 hours 35 minutes 40 seconds
Course
AI Coding with Jupyter AI
Duration 46 minutes 33 seconds
Course
Build a Python REST API with the Django Rest Framework
Duration 10 hours 8 minutes 56 seconds
Course
Python for Business Data Analytics & Intelligence
Duration 15 hours 25 minutes 6 seconds
Course
Python Data Analysis & Visualization Masterclass
Duration 20 hours 17 minutes 23 seconds
Course