Skip to main content

Python 3: Deep Dive (Part 1 - Functional)

45h 50m 55s
English
Paid

Course description

This is Part 1 of a series of courses intended to dive into the inner mechanics and more complicated aspects of Python 3. This is not a beginner course - if you've been coding Python for a week or a couple of months, you probably should keep writing Python for a bit more before tackling this series.

Read more about the course

On the other hand, if you're now starting to ask yourself questions like:

  • I wonder how this works?

  • is there another way of doing this?

  • what's a closure? is that the same as a lambda?

  • I know how to use a decorator someone else wrote, but how does it work? Can I write my own?

  • why isn't this boolean expression returning a boolean value?

  • what does an import actually do, and why am I getting side effects?

  • and similar types of question...

then this course is for you.

Please make sure you review the pre-requisites for this course - although I give a brief refresh of basic concepts at the beginning of the course, those are concepts you should already be very comfortable with as you being this course.

In this course series, I will give you a much more fundamental and deeper understanding of the Python language and the standard library.

Python is called a "batteries-included" language for good reason - there is a ton of functionality in base Python that remains to be explored and studied.

So this course is not about explaining my favorite 3rd party libraries - it's about Python, as a language, and the standard library.

In particular this course is based on the canonical CPython. You will also need Jupyter Notebooks to view the downloadable fully-annotated Python notebooks.

It's about helping you explore Python and answer questions you are asking yourself as you develop more and more with the language.

In Python 3: Deep Dive (Part 1) we will take a much closer look at:

  • Variables - in particular that they are just symbols pointing to objects in memory

  • Namespaces and scope

  • Python's numeric types

  • Python boolean type - there's more to a simple or statement than you might think!

  • Run-time vs compile-time and how that affects function defaults, decorators, importing modules, etc

  • Functions in general (including lambdas)

  • Functional programming techniques (such as map, reduce, filter, zip, etc)

  • Closures

  • Decorators

  • Imports, modules and packages

  • Tuples as data structures

  • Named tuples

To get the most out of this course, you should be prepared to pause the coding videos, and attempt to write code before I do! Sit back during the concept videos, but lean in for the code videos!

And after you have seen a code video, pause the course, and try things out yourself - explore, experiment, play with code, and see how things work (or don't work! - that's also a great way to learn!)

Requirements:
  • Basic introductory knowledge of Python programming (variables, conditional statements, loops, functions, lists, tuples, dictionaries, classes).
  • You will need Python 3.6 or above, and a development environment of your choice (command line, PyCharm, Jupyter, etc.)
Who this course is for:
  • Anyone with a basic understanding of Python that wants to take it to the next level and get a really deep understanding of the Python language and its data structures.
  • Anyone preparing for an in-depth Python technical interview.

What you'll learn:

  • An in-depth look at variables, memory, namespaces and scopes
  • A deep dive into Python's memory management and optimizations
  • In-depth understanding and advanced usage of Python's numerical data types (Booleans, Integers, Floats, Decimals, Fractions, Complex Numbers)
  • Advanced Boolean expressions and operators
  • Advanced usage of callables including functions, lambdas and closures
  • Functional programming techniques such as map, reduce, filter, and partials
  • Create advanced decorators, including parametrized decorators, class decorators, and decorator classes
  • Advanced decorator applications such as memoization and single dispatch generic functions
  • Use and understand Python's complex Module and Package system
  • Idiomatic Python and best practices
  • Understand Python's compile-time and run-time and how this affects your code
  • Avoid common pitfalls

Watch Online

This is a demo lesson (10:00 remaining)

You can watch up to 10 minutes for free. Subscribe to unlock all 158 lessons in this course and access 10,000+ hours of premium content across all courses.

View Pricing
0:00
/
#1: 1.1. Course Overview

All Course Lessons (158)

#Lesson TitleDurationAccess
1
1.1. Course Overview Demo
18:09
2
2.1. Introduction
01:44
3
2.2. The Python Type Hierarchy
05:52
4
2.3. Multi-Line Statements and Strings
22:52
5
2.4. Variable Names
11:01
6
2.5. Conditionals
07:39
7
2.6. Functions
12:28
8
2.7. The While Loop
14:26
9
2.8. Break, Continue and the Try Statement
10:25
10
2.9. The For Loop
17:21
11
2.10. Classes
40:18
12
3.1. Introduction
02:55
13
3.2. Variables are Memory References
08:22
14
3.3. Reference Counting
14:22
15
3.4. Garbage Collection
26:40
16
3.5. Dynamic vs Static Typing
05:29
17
3.6. Variable Re-Assignment
04:49
18
3.7. Object Mutability
15:23
19
3.8. Function Arguments and Mutability
17:29
20
3.9. Shared References and Mutability
09:37
21
3.10. Variable Equality
14:23
22
3.11. Everything is an Object
13:59
23
3.12. Python Optimizations Interning
09:15
24
3.13. Python Optimizations String Interning
19:12
25
3.14. Python Optimizations Peephole
20:10
26
4.1. Introduction
02:59
27
4.2. Integers Data Types
18:07
28
4.3. Integers Operations
24:26
29
4.4. Integers Constructors and Bases - Lecture
29:35
30
4.5. Integers Constructors and Bases - Coding
20:24
31
4.6. Rational Numbers - Lecture
14:27
32
4.7. Rational Numbers - Coding
12:34
33
4.8. Floats Internal Representations - Lecture
19:53
34
4.9. Floats Internal Representations - Coding
04:57
35
4.10. Floats Equality Testing - Lecture
18:43
36
4.11. Floats Equality Testing - Coding
14:41
37
4.12. Floats Coercing to Integers - Lecture
09:40
38
4.13. Floats Coercing to Integers - Coding
05:04
39
4.14. Floats Rounding - Lecture
25:22
40
4.15. Floats Rounding - Coding
13:34
41
4.16. Decimals - Lecture
16:50
42
4.17. Decimals - Coding
10:27
43
4.18. Decimals Constructors and Contexts - Lecture
10:06
44
4.19. Decimals Constructors and Contexts - Coding
10:29
45
4.20. Decimals Math Operations - Lecture
09:33
46
4.21. Decimals Math Operations - Coding
13:31
47
4.22. Decimals Performance Considerations
10:30
48
4.23. Complex Numbers - Lecture
11:29
49
4.24. Complex Numbers - Coding
14:17
50
4.25. Booleans
21:01
51
4.26. Booleans Truth Values - Lecture
09:09
52
4.27. Booleans Truth Values - Coding
14:48
53
4.28. Booleans Precedence and Short-Circuiting - Lecture
21:11
54
4.29. Booleans Precedence and Short-Circuiting - Coding
13:38
55
4.30. Booleans Boolean Operators - Lecture
18:01
56
4.31. Booleans Boolean Operators - Coding
14:46
57
4.32. Comparison Operators
20:54
58
5.1. Introduction
01:06
59
5.2. Argument vs Parameter
03:44
60
5.3. Positional and Keyword Arguments - Lecture
13:06
61
5.4. Positional and Keyword Arguments - Coding
06:22
62
5.5. Unpacking Iterables - Lecture
13:01
63
5.6. Unpacking Iterables - Coding
21:10
64
5.7. Extended Unpacking - Lecture
17:51
65
5.8. Extended Unpacking - Coding
29:05
66
5.9. args - Lecture
06:01
67
5.10. args - Coding
11:48
68
5.11. Keyword Arguments - Lecture
09:24
69
5.12. Keyword Arguments - Coding
14:19
70
5.13. kwargs
10:29
71
5.14. Putting it all Together - Lecture
13:26
72
5.15. Putting it all Together - Coding
17:26
73
5.16. Application A Simple Function Timer
19:09
74
5.17. Parameter Defaults - Beware!!
18:45
75
5.18. Parameter Defaults - Beware Again!!
19:23
76
6.1. Introduction
04:06
77
6.2. Docstrings and Annotations - Lecture
15:59
78
6.3. Docstrings and Annotations - Coding
15:03
79
6.4. Lambda Expressions - Lecture
12:10
80
6.5. Lambda Expressions - Coding
15:00
81
6.6. Lambdas and Sorting
15:57
82
6.7. Challenge - Randomize an Iterable using Sorted!!
02:56
83
6.8. Function Introspection - Lecture
19:31
84
6.9. Function Introspection - Coding
28:37
85
6.10. Callables
14:47
86
6.11. Map, Filter, Zip and List Comprehensions - Lecture
21:44
87
6.12. Map, Filter, Zip and List Comprehensions - Coding
21:15
88
6.13. Reducing Functions - Lecture
25:52
89
6.14. Reducing Functions - Coding
21:11
90
6.15. Partial Functions - Lecture
11:13
91
6.16. Partial Functions - Coding
25:33
92
6.17. The operator Module - Lecture
15:35
93
6.18. The operator Module - Coding
32:44
94
7.1. Introduction
01:32
95
7.2. Global and Local Scopes - Lecture
34:55
96
7.3. Global and Local Scopes - Coding
15:41
97
7.4. Nonlocal Scopes - Lecture
22:18
98
7.5. Nonlocal Scopes - Coding
14:38
99
7.6. Closures - Lecture
38:36
100
7.7. Closures - Coding
32:06
101
7.8. Closure Applications - Part 1
15:38
102
7.9. Closure Applications - Part 2
18:41
103
7.10. Decorators (Part 1) - Lecture
21:07
104
7.11. Decorators (Part 1) - Coding
20:59
105
7.12. Decorator Application (Timer)
35:17
106
7.13. Decorator Application (Logger, Stacked Decorators)
23:48
107
7.14. Decorator Application (Memoization)
29:15
108
7.15. Decorator Factories - Lecture
11:45
109
7.16. Decorator Factories - Coding
25:58
110
7.17. Decorator Application (Decorator Class)
09:41
111
7.18. Decorator Application (Decorating Classes)
48:24
112
7.19. Decorator Application (Dispatching) - Part 1
31:46
113
7.20. Decorator Application (Dispatching) - Part 2
35:46
114
7.21. Decorator Application (Dispatching) - Part 3
26:51
115
8.1. Introduction
03:19
116
8.2. Tuples as Data Structures - Lecture
19:02
117
8.3. Tuples as Data Structures - Coding
25:25
118
8.4. Named Tuples - Lecture
27:50
119
8.5. Named Tuples - Coding
35:15
120
8.6. Named Tuples - Modifying and Extending - Lecture
14:26
121
8.7. Named Tuples - Modifying and Extending - Coding
21:47
122
8.8. Named Tuples - DocStrings and Default Values - Lecture
13:31
123
8.9. Named Tuples - DocStrings and Default Values - Coding
15:47
124
8.10. Named Tuples - Application - Returning Multiple Values
06:23
125
8.11. Named Tuples - Application - Alternative to Dictionaries
28:46
126
9.1. Introduction
03:03
127
9.2. What is a Module
24:31
128
9.3. How does Python Import Modules
49:33
129
9.4. Imports and importlib
27:40
130
9.5. Import Variants and Misconceptions - Lecture
14:01
131
9.6. Import Variants and Misconceptions - Coding
27:04
132
9.7. Reloading Modules
18:30
133
9.8. Using __main__
27:02
134
9.9. Modules Recap
13:03
135
9.10. What are Packages - Lecture
20:25
136
9.11. What are Packages - Coding
27:12
137
9.12. Why Packages
13:08
138
9.13. Structuring Packages - Part 1
36:42
139
9.14. Structuring Packages - Part 2
27:28
140
9.15. Namespace Packages
10:39
141
9.16. Importing from Zip Archives
03:29
142
10.1. Python 3.10
25:18
143
10.2. Python 3.9
28:47
144
10.3. Python 3.8 3.7
34:26
145
10.4. Python 3.6 Highlights
07:50
146
10.5. Python 3.6 - Dictionary Ordering
19:46
147
10.6. Python 3.6 - Underscores in Numeric Literals
03:39
148
10.7. Python 3.6 - Preserved Order of kwargs and Named Tuple Application
05:34
149
10.8. Python 3.6 - f-Strings
09:20
150
11.1. Introduction
03:41
151
11.2. Additional Resources
12:54
152
11.3. Random Seeds
17:27
153
11.4. Random Choices
26:08
154
11.5. Random Samples
07:03
155
11.6. Timing code using timeit
16:18
156
11.7. Don't Use args and kwargs Names Blindly
07:36
157
11.8. Command Line Arguments
01:00:08
158
11.9. Sentinel Values for Parameter Defaults
11:03

Unlock unlimited learning

Get instant access to all 157 lessons in this course, plus thousands of other premium courses. One subscription, unlimited knowledge.

Learn more about subscription

Books

Read Book Python 3: Deep Dive (Part 1 - Functional)

#Title
11.1. Section 1 - Intro
21.4. Python Deep Dive 1
32.1. Quick Refresher Introduction
42.2. Python Type Hierarchy
52.3. Multi-Line Statements and Strings
62.4. Variable Names
73.2. 02 - Variables are Memory References
83.3. 03 - Reference Counting
93.4. 04 - Garbage Collection
103.5. 05 - Dynamic vs Static Typing
113.6. 06 - Variable Re-Assignment
123.7. 07 - Object Mutability
133.8. 08 - Function Arguments and Mutability
143.9. 09 - Shared References and Mutability
153.10. 10 - Variable Equality
163.11. 11 - Everything is an Object
173.12. 12 - Python Optimizations - Interning
183.13. 13 - Python Optimizations String Interning
193.14. 14 - Python Optimizations - Peephole
204.2. 02 - Integers Data Type
214.3. 03 - Integers - Operations
224.4. 04 - Integers - Constructors and Bases
234.6. 06 - Rational Numbers
244.8. 08 - Floats - Internal Representation
254.10. 10 - Floats - Equality Testing
264.12. 12 - Floats to Integers
274.14. 14 - Floats - Rounding
284.16. 16 - Decimals
294.18. 18 - Decimals - Constructors and Contexts
304.20. 20 - Decimals - Math Operations
314.22. 22 - Decimals - Performance Considerations
324.23. 23 - Complex Numbers
334.25. 25 - Booleans
344.26. 26 - Booleans - Truth Values - Lecture
354.28. 28 - Boolean - Precedence and Short-Circuiting
364.30. 30 - Boolean - Boolean Operators
374.32. 32 - Comparison Operators
385.2. 02 - Argument vs Parameter
395.3. 03 - Positional Arguments
405.5. 05 - Unpacking Iterables
415.7. 07 - Extended Unpacking
425.9. 09 - star-args
435.11. 11 - Keyword Arguments
445.13. 13 - kwargs
455.14. 14 - Putting it all together
465.17. 17 - Default Values
476.2. 02 - Docstrings and Annotations
486.4. 04 - Lambda Expressions
496.8. 08 - Function Introspection
506.10. 10 - Callables
516.11. 11 - Map, Filter, Zip
526.13. 13 - Reducing Functions
536.15. 15 - Partial Functions
546.17. 17 - The operator Module
557.2. 02 - Global and Local Scopes
567.4. 04 - NonLocal Sopes
577.6. 06 - Closures
587.10. 10 - Decorators 1
597.15. 15 - Decorators 2
608.2. 02 - Tuples
618.4. 04 - Named Tuples
628.6. 06 - Named Tuples - Modifying and Extending
638.8. 08 - Named Tuples - DocStrings and Default Values
649.5. 05 - Import Variants
659.9. 08 - Modules Recap
669.10. 09 - What are Packages
679.12. 11 - Why Packages
689.15. 14 - Namespace Packages
6911.2. Additional Resources

Comments

0 comments

Want to join the conversation?

Sign in to comment

Similar courses

Deployment from Scratch

Deployment from Scratch

Sources: Josef Strzibny
"Deployment from Scratch" is an introduction to web application deployment that covers the entire process from basic concepts to complex server and database...
Build an LLM-powered Q&A App using LangChain, OpenAI and Python

Build an LLM-powered Q&A App using LangChain, OpenAI and Python

Sources: zerotomastery.io
LLMs like GPT are great at answering questions about data they've been trained on...but what if you want to ask it questions about data it hasn't been trained o
2 hours 38 minutes 22 seconds
Fullstack Flask: Build a Complete SaaS App with Flask

Fullstack Flask: Build a Complete SaaS App with Flask

Sources: fullstack.io
Build (and deploy) a real SaaS app in 8 weeks using Python and Flask with this self-paced, online course.
7 hours 33 minutes 4 seconds
Python - The Practical Guide

Python - The Practical Guide

Sources: udemy
This is a highly practice-oriented Python course that teaches you Python from scratch - no prior programming experience required! Python is probably THE most trending programmin...
16 hours 26 minutes 30 seconds
CS50's Web Programming with Python and JavaScript

CS50's Web Programming with Python and JavaScript

Sources: HarvardX (Harvard University)
Topics include database design, scalability, security, and user experience. Through hands-on projects, you'll learn to write and use APIs, create interactive UI
14 hours 3 minutes 25 seconds