Skip to main content

Advanced AI: LLMs Explained with Math (Transformers, Attention Mechanisms & More)

4h 55m 29s
English
Paid

Course description

Dive into the mathematical foundations of transformers, such as GPT and BERT. From tokenization to attention mechanisms - analyze the algorithms that underpin modern AI systems. Enhance your skills to innovate and become a leader in the field of machine learning.

Watch Online

This is a demo lesson (10:00 remaining)

You can watch up to 10 minutes for free. Subscribe to unlock all 32 lessons in this course and access 10,000+ hours of premium content across all courses.

View Pricing
0:00
/
#1: Advanced AI: LLMs Explained with Math

All Course Lessons (32)

#Lesson TitleDurationAccess
1
Advanced AI: LLMs Explained with Math Demo
03:01
2
Creating Our Optional Experiment Notebook - Part 1
03:22
3
Creating Our Optional Experiment Notebook - Part 2
04:02
4
Encoding Categorical Labels to Numeric Values
13:25
5
Understanding the Tokenization Vocabulary
15:06
6
Encoding Tokens
10:57
7
Practical Example of Tokenization and Encoding
12:49
8
DistilBert vs. Bert Differences
04:47
9
Embeddings In A Continuous Vector Space
07:41
10
Introduction To Positional Encodings
05:14
11
Positional Encodings - Part 1
04:15
12
Positional Encodings - Part 2 (Even and Odd Indices)
10:11
13
Why Use Sine and Cosine Functions
05:09
14
Understanding the Nature of Sine and Cosine Functions
09:53
15
Visualizing Positional Encodings in Sine and Cosine Graphs
09:25
16
Solving the Equations to Get the Values for Positional Encodings
18:08
17
Introduction to Attention Mechanism
03:03
18
Query, Key and Value Matrix
18:11
19
Getting Started with Our Step by Step Attention Calculation
06:54
20
Calculating Key Vectors
20:06
21
Query Matrix Introduction
10:21
22
Calculating Raw Attention Scores
21:25
23
Understanding the Mathematics Behind Dot Products and Vector Alignment
13:33
24
Visualizing Raw Attention Scores in 2D
05:43
25
Converting Raw Attention Scores to Probability Distributions with Softmax
09:17
26
Normalization
03:20
27
Understanding the Value Matrix and Value Vector
09:08
28
Calculating the Final Context Aware Rich Representation for the Word "River"
10:46
29
Understanding the Output
01:59
30
Understanding Multi Head Attention
11:56
31
Multi Head Attention Example and Subsequent Layers
09:52
32
Masked Language Learning
02:30

Unlock unlimited learning

Get instant access to all 31 lessons in this course, plus thousands of other premium courses. One subscription, unlimited knowledge.

Learn more about subscription

Comments

0 comments

Want to join the conversation?

Sign in to comment

Similar courses

Building Gen AI Agents for Enterprise: Leadership and Product Manager Edition

Building Gen AI Agents for Enterprise: Leadership and Product Manager Edition

Sources: Hamza Farooq
What can AI-based agents do for me? We are living in one of the most revolutionary periods in the history of computing, and generative AI is at the...
12 hours 26 minutes 49 seconds
AI Agents Bootcamp: Zero to Mastery

AI Agents Bootcamp: Zero to Mastery

Sources: zerotomastery.io
This is not a course about "clever prompts" - it's a course about building real AI systems that actually get the job done. You will go beyond simple chatbots...
6 hours 55 minutes 29 seconds
The AI Engineering Bootcamp

The AI Engineering Bootcamp

Sources: "Dr. Greg" Loughnane, Chris "The Wiz" Alexiuk
AI Engineering Bootcamp is an intensive 10-week program aimed at preparing participants for the role of an AI engineer (specializing in artificial...
22 hours 13 minutes 23 seconds
RAG (Retrieval)

RAG (Retrieval)

Sources: Mckay Wrigley (takeoff)
Study the key principles of developing Retrieval-Augmented Generation (RAG) systems and the application of advanced search methods to improve the performance...
4 hours 33 minutes 19 seconds