Skip to main content

The Basics of Prompt Engineering

45m 54s
English
Paid

Course description

In this course, you will master the basics of Prompt Engineering - one of the key skills in the AI era. Large language models (LLMs) can reason, write texts, summarize, generate data, and even program, but the quality of their work directly depends on the prompts you give them. Most people spend hours on endless experiments with inputs without ever understanding why the model responds in a certain way. This course addresses this problem.

Read more about the course

In just two hours, you will:

  1. 1. Understand how LLMs process prompts (tokenization, context windows, output constraints).
  2. 2. Learn how to create effective prompts using a clear structure (task, details, tone, format, context).
  3. 3. Know when to use classic models and when to opt for reasoning models, based on task complexity.
  4. 4. Discover how to reduce "hallucinations" and improve result stability using examples and formalized techniques.
  5. 5. See actual demonstrations of prompts and compare their performance across different models.


The course is short, concentrated, and practical: you will receive ready-made prompt templates, annotated examples, and scenarios for application in real projects—from writing resumes and generating structured data to integrating LLM into products. The course is led by Nick, a senior QA engineer and technical project manager, who previously worked on Alexa at Amazon. He has trained thousands of students and advised teams on integrating AI into workflows—from APIs to internal tools.

Watch Online

This is a demo lesson (10:00 remaining)

You can watch up to 10 minutes for free. Subscribe to unlock all 9 lessons in this course and access 10,000+ hours of premium content across all courses.

View Pricing

Watch Online The Basics of Prompt Engineering

0:00
/
#1: Basics of Prompt Engineering: Introduction

All Course Lessons (9)

#Lesson TitleDurationAccess
1
Basics of Prompt Engineering: Introduction Demo
03:21
2
What is Prompt Engineering
01:21
3
Key LLM Concepts
04:39
4
Basic Tips
02:50
5
Traditional vs Reasoning Models
02:11
6
Anatomy of a Prompt
11:29
7
Traditional Model Example
11:32
8
Prompting Reasoning Models
04:40
9
Reasoning Model Example
03:51

Unlock unlimited learning

Get instant access to all 8 lessons in this course, plus thousands of other premium courses. One subscription, unlimited knowledge.

Learn more about subscription

Comments

0 comments

Want to join the conversation?

Sign in to comment

Similar courses

3D Browser Game Development with AI and Cursor

3D Browser Game Development with AI and Cursor

Sources: Kevin Kern (instructa.ai)
Hello everyone! Welcome to the course "Development of a 3D Browser Game with AI and Cursor". I'm glad to see you here! First, I want to tell you why we...
2 hours 7 minutes 55 seconds
MCP in Practice: The Future of AI Agents

MCP in Practice: The Future of AI Agents

Sources: newline (ex fullstack.io)
In this course, you will gain a comprehensive understanding of MCP - from key components and basic concepts to practical application examples. We will pay...
1 hour 10 minutes 6 seconds
Build AI Agents with AWS

Build AI Agents with AWS

Sources: zerotomastery.io
Learn to design, create, and deploy multiple AI agents using AWS by building your own intelligent travel assistant, ready for production. Gain practical...
3 hours 9 minutes 7 seconds
Beginner Python Primer for AI Engineering

Beginner Python Primer for AI Engineering

Sources: Towards AI, Louis-François Bouchard
Don't just interact with LLM models - create your own AI solutions in Python. This course will take you from beginner to confident proficiency in Python...
1 hour 41 minutes 58 seconds
Local LLMs via Ollama & LM Studio - The Practical Guide

Local LLMs via Ollama & LM Studio - The Practical Guide

Sources: Academind Pro
AI assistants like ChatGPT and Google Gemini have become everyday tools. However, when privacy, cost, offline functionality, or flexible...
3 hours 52 minutes 28 seconds