AI Engineering Course
1h 36m 46s
English
Paid
Course description
This course is designed to help programmers and developers transition into the field of artificial intelligence engineering. You will thoroughly explore vector databases, indexing, large language models (LLM), and the attention mechanism.
Read more about the course
By the end of the course, you will understand how LLMs work and be able to use them to create real applications.
What you will learn:
- Develop mental models of how LLMs in the style of GPT work
- Understand processes such as tokenization, embeddings, attention, and masking
- Optimize LLM inference using caching, batching, and quantization
- Design and deploy RAG pipelines using vector databases
- Compare methods: prompt engineering, fine-tuning, and agent-based architectures
- Debug, monitor, and scale LLM systems in production
Watch Online
Watch Online AI Engineering Course
0:00
/ #1: Course Intro
All Course Lessons (21)
| # | Lesson Title | Duration | Access |
|---|---|---|---|
| 1 | Course Intro Demo | 02:01 | |
| 2 | Usecase | 01:48 | |
| 3 | How are vectors constructed | 06:43 | |
| 4 | Choosing the right DB | 03:27 | |
| 5 | Vector compression | 03:27 | |
| 6 | Vector Search | 06:59 | |
| 7 | Milvus DB | 05:38 | |
| 8 | LLM Intro | 00:43 | |
| 9 | How LLMs work | 08:31 | |
| 10 | LLM text generation | 03:08 | |
| 11 | LLM improvements | 05:10 | |
| 12 | Attention | 05:28 | |
| 13 | Transformer Architecture | 03:40 | |
| 14 | KV Cache | 08:28 | |
| 15 | Paged Attention | 04:38 | |
| 16 | Mixture Of Experts | 04:01 | |
| 17 | Flash Attention | 03:40 | |
| 18 | Quantization | 03:33 | |
| 19 | Sparse Attention | 05:14 | |
| 20 | SLM and Distillation | 05:31 | |
| 21 | Speculative Decoding | 04:58 |
Unlock unlimited learning
Get instant access to all 20 lessons in this course, plus thousands of other premium courses. One subscription, unlimited knowledge.
Learn more about subscriptionBooks
Read Book AI Engineering Course
| # | Title |
|---|---|
| 1 | 1. Vector+Embeddings+&+Semantic+Space |
| 2 | 2. Compression+&+Quantization_+Scaling+Vectors+Efficiently-4 |
| 3 | 3. Indexing+Techniques_+Making+Vector+Search+Scale |
| 4 | 4. Search+Execution+Flow_+From+Query+to+Result |
| 5 | 5. LLMs+and+RAG |
| 6 | 6. What+is+Attention+and+Why+Does+It+Matter |
| 7 | 7. Paged+Attention |
| 8 | 8. Quantization+Summary |
Comments
0 commentsSimilar courses

Build a SwiftUI app with Claude AI
Sources: designcode.io
This comprehensive course on SwiftUI combines modern capabilities of artificial intelligence with practical development. You will go through the entire...
9 hours 5 minutes 44 seconds

Build SwiftUI apps for iOS 18 with Cursor and Xcode
Sources: designcode.io
In this course, we will explore the new features of SwiftUI 6 and Xcode 16 for creating applications for iOS 18. You will learn how to work with mesh gradients,
4 hours 35 minutes 14 seconds

MCP in Practice: The Future of AI Agents
Sources: newline (ex fullstack.io)
In this course, you will gain a comprehensive understanding of MCP - from key components and basic concepts to practical application examples. We will pay...
1 hour 10 minutes 6 seconds

Build a ChatGPT Deep Research Clone with Streamlit
Sources: zerotomastery.io
Imagine that you have your own AI assistant that conducts in-depth research for you: it figures out exactly what you need, searches for information in...
1 hour 39 minutes 27 seconds

Build a React Native app with Claude AI
Sources: designcode.io
This comprehensive course is dedicated to integrating advanced AI tools into the workflow of development in React Native, which allows for a radical change in a
13 hours 53 minutes 10 seconds
Want to join the conversation?
Sign in to comment